Math 255A Lecture 18 Notes

Daniel Raban

November 7, 2018

1 The Riesz-Fredholm Theorem

1.1 Conclusion of the proof of the Riesz-Fredholm theorem

Last time, we showed that if $T \in \mathcal{L}(B_1, B_2)$ with $\operatorname{im}(T)$ closed, then $\operatorname{im}(T^*) = (\operatorname{ker}(T))^o$ is closed, and $(B_2/\operatorname{im}(T))^* \cong \operatorname{ker}(T^*)$. In particular, $\operatorname{dim}(\operatorname{coker}(T)) = \operatorname{dim}(\operatorname{ker}(T^*))$. Apply this when T = I + T', where $T' : B \to B$ is compact.

Proposition 1.1. Let $T: B_1 \to B_2$ be compact. Then $T^*: B_2^* \to B_1^*$ is compact.

Proof. Let $\xi_n \in B_2^*$ be bounded, $\|\xi_n\| \leq 1$ for $n = 1, 2, \ldots$ Set $K = \overline{T(\{\|x\| \leq 1\}\}} \subseteq B_2$ compact. Consider the sequence of continuous functions $\varphi_n(x) = \langle x, \xi_n \rangle$ for $x \in K$. We have:

1.
$$|\varphi_n(x)| \le ||x|| ||\xi_n|| \le C$$
 for all $n = 1, 2, ...$ and $x \in K$

2.
$$|\varphi_n(x) - \varphi_n(y)| = |\langle x - y, \xi_n \rangle_2| \le ||x - y||_1 \text{ for } x, y \in K.$$

By Ascoli's theorem, there exists a uniformly convergent subsequence (φ_{n_k}) . In particular, $\sup_{||x|| \le 1} |\varphi_{n_k}(Tx) - \varphi_{n_\ell}(Tx)| \to 0$ as $k, \ell \to \infty$. So

$$\sup_{\|x\| \le 1} |\langle Tx, \xi_{n_k} \rangle_2 - \langle Tx, \xi_{n_\ell} \rangle| = \sup_{\|x\| \le 1} |\langle x, T^* \xi_{n_k} \rangle_2 - \langle x, T^* \xi_{n_\ell} \rangle| = \|T^* \xi_{n_k} - T^* \xi_{n_\ell}\|_{B_1^*} \to 0$$

as $k, \ell \to \infty$. So $(T^*\xi_{n_k})$ converges, which makes T^* compact.

This completes our proof of the Riesz-Fredholm theorem.

Theorem 1.1 (Riesz-Fredholm). Let B be a Banach space, and let $T \in \mathcal{L}_C(B, B)$. Then I - T is Fredholm, and ind(I - T) = 0.

Proof. Let $K : B \to B$ be compact. Then $\dim(\ker(I+K)) < \infty$, $\operatorname{im}(I+K)$ is closed, $\dim(\operatorname{coker}(I+K)) = \dim(\ker(I+K^*)) < \infty$. Thus, I+K is Fredholm and $\operatorname{ind}(I+K) = \operatorname{ind}(I+\lambda K) = \operatorname{ind}(I) = 0$.

1.2 Atkinson's theorem and stronger Riesz-Fredholm

We can actually upgrade the statement of the Riesz-Fredholm theorem to get a stronger theorem.

Proposition 1.2 (Atkinson's theorem). An operator $T \in \mathcal{L}(B_1, B_2)$ is Fredholm if and only if there exists $S \in \mathcal{L}(B_2, B_1)$ such that TS - I and ST - I are compact in B_2 and B_1 , respectively.

Proof. Sufficiency: Let $S \in \mathcal{L}(B_2, B_1)$ be such that $ST = I + K_1$ and $TS = I + K_2$, where K_1, K_2 are compact. Then $\ker(T) \subseteq \ker(I + K_1)$, so $|\dim(\ker(T)) < \infty$. Similarly, $\operatorname{im}(T) \supseteq \operatorname{im}(I + K_2)$, so $\dim(\operatorname{coker}(T)) \leq \dim(\operatorname{coker}(I + K_2)) < \infty$. So T is Fredholm.

Necessity: Take the Grushin approach: if T is Fredholm, write $n_+ = \dim(\ker(T))$, and $n_- = \dim(\operatorname{coker}(T))$. Then there exist an injective $R_- : \mathbb{C}^{n_-} \to B_2$ with $B_2 = \operatorname{im}(T) \oplus R_-(\mathbb{C}^{n_-})$ and a surjective $R_+ : B_1 \to \mathbb{C}^{n_+}$ such that $R_+|_{\ker(T)}$ is bijective. Then the operator $\mathcal{P} : B_1 \oplus \mathbb{C}^{n_-} \to B_2 \oplus \mathbb{C}^{n_+}$ given by

$$\mathcal{P} = \begin{bmatrix} T & R_- \\ R_+ & 0 \end{bmatrix}$$

is invertible. It has the inverse

$$\mathcal{E} = \begin{bmatrix} E & E_+ \\ E_- & E_{-+} \end{bmatrix}.$$

We get that

$$\mathcal{PE} = \begin{bmatrix} T & R_{-} \\ R_{+} & 0 \end{bmatrix} \begin{bmatrix} E & E_{+} \\ E_{-} & E_{-+} \end{bmatrix} = \begin{bmatrix} TE + R_{-}E_{-} & * \\ * & * \end{bmatrix},$$
$$\mathcal{EP} = \begin{bmatrix} E & E_{+} \\ E_{-} & E_{-+} \end{bmatrix} \begin{bmatrix} T & R_{-} \\ R_{+} & 0 \end{bmatrix} = \begin{bmatrix} ET + E_{+}R_{+} & * \\ * & * \end{bmatrix},$$

so $TE - I = -R_0E$ and $ET - I = -E_+R_+$. The maps R_-E_- and E_+R_+ have finite rank, so they are compact.

Remark 1.1. If ET - I and TE - I are compact, then $E \in \mathcal{L}(B_2, B_1)$ is Fredholm, and $\operatorname{ind}(ET) = \operatorname{ind}(I + K) = 0$. By the logarithmic law, this equals $\operatorname{inf}(E) + \operatorname{ind}(T)$. So $\operatorname{ind}(E) = -\operatorname{ind}(T)$.

Theorem 1.2. Let $T \in \mathcal{L}(B_1, B_2)$ be Fredholm and $S \in \mathcal{L}_C(B_1, B_2)$. Then T + S is Fredholm, and $\operatorname{ind}(T + S) = \operatorname{ind}(T)$.

Proof. Let $E \in \mathcal{L}(B_2, B_1)$ be such that TE - I and ET - I are compact. Then (T+S)E - I and E(T+S) - I are compact. So T+S is Fredholm. Also, $\operatorname{ind}(T+S) = \operatorname{ind}(T+\lambda S)$ for $\lambda \in \mathbb{C}$. Letting $\lambda \to 0$, we get $\operatorname{ind}(T+S) = \operatorname{ind}(T)$.

1.3 Applications to differential equations

Proposition 1.3. Let $a, b \in C([0, 1])$, and consider the boundary value problem u'' + au + bu = f with boundary conditions u(0) = u(1) = 0. Here, $f \in C([0, 1])$, and $u \in C^2([0, 1])$. The boundary value problem has a unique solution for any $f \in C([0, 1])$ if and only if the homogeneous problem when f = 0 only has the trivial solution.

Proof. Let $B_1 = \{u \in C^2([0,1]) : u(0) = u(1) = 0\}$ be a Banach space. Let $B_2 = C([0,1])$ with

$$||u||_{B_2} = \sum_{j=0}^2 ||u^{(j)}||_{L^{\infty}}.$$

Then $T: B - 1 \to B_2$ sending $u \mapsto u''$ is bijective, so $\operatorname{ind}(T) = 0$. The map $S: B_1 \to B_2$ sending u + au' + bu is compact, so T + S is Fredholm with $\operatorname{ind}(T + S) = 0$. So T + S is bijective if and only if T + S is injective.

Our next application will be the Toeplitz index theorem. Here is the idea. Let H be the closed subspace of $L^2(\mathbb{R}/2\pi\mathbb{Z})$ with Fourier coefficients $\hat{u}(n) = 0$ for n < 0. Let $\Pi : L^2 \to H$ be an orthogonal projection. Let $f \in C(\mathbb{C}/2\pi\mathbb{Z}) \mapsto \text{Top}(f)$, which sends $u \mapsto \Pi(fu)$. This is called the **Toeplitz operator**.

Theorem 1.3. Top(f) is Fredholm if and only if $f \neq 0$. Moreover, ind(Top(f)) = -winding number of f.